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1.Introduction

Spectral theory of operators plays a major role in mathematics and applied
sciences. Boundary value problems with an eigenparameter in the boundary
conditions are one of the most important fields in the spectral theory of operators.
Many researches have been dedicated to studying the spectral properties of the
boundary value problems with spectral parameter dependent boundary conditions
(see, e.g., Fulton [4], Walter [18]). Various physical applications of such problems
can be found in [4]. Note that many problems of mathematical physics,
mechanics,theory of partial differential equations, etc are reduced to the study of
boundary value problems for operator-differential equations in different spaces.
The asymptotic distribution of eigenvalues for boundary-value problems with
operator coefficients was first considered by A.G. Kostyuchenko and B.M. Levitan
[7] .There followed a lot of works dedicated to the investigation of differential
operators’ spectrum with operator coefficients. The asymptotic distribution of the
eigenvalues of operators defined on the whole space and having a discrete
spectrum can be interesting for those who specialize in gquantum mechanics. In
[17], M.A. Rybak studied the asymptotic behavior of eigenvalues of a boundary
value problem with an eigenparameter in the boundary conditions for a second
order elliptic operator-differential equation. The symmetry and self-adjointness of
the operator associated with this problem were investigated. It was shown that if
the considered operator has a discrete spectrum, then the operator associated with

* The work was presented at the webinar of the Institute of Applied Mathematics 06.07.2021
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this problem has a discrete spectrum, too. The asymptotic formula for the
eigenvalues of this problem was derived.

The theory of operator-differential equations with unbounded operator-
coefficient is a common tool for studying infinite systems of ordinary differential-
operators, partial differential equations and integro-differential equations. The main
task in this theory is to determine the behavior of the eigenvalues and
eigenfunctions of the associated differential operators.

In [1],we considered the spectral problem for the Sturm-Liouville operator
in the space L,(H,(0,1)). In this work we consider the spectral problem with the
boundary condition which given in general form . The symmetry and self-
adjointness of the operator associated with this problem were established and was
announced in [13]. The asymptotic formula for the eigenvalues of this problem was
derived. If b=d =1, ¢ =0in the second con-dition, then the boundary condition
takes the form ay(1) + y'() = —Ay'(2) . For this problem the first [14,15] and the
second [9,16] trace formulas are established.

In [11,12] the first and the second regularized trace formulas for Sturm-
Liouville operators were calculated.

In this paper we consider an operator different from the operators in [2,3]
by a boundary condition. The main results of this work was announced in [10].

2. Formulation of the problem
H is a separable Hilbert space. A scalar product and a normin H

denoted by (-,-) ,and H . H respectively. L,(H,(0,1)) is aspace of the
y(t) .Let L, =L,(H,(01))®H . Define the

vector functions y(t) such thatj <o

0

scalar product in L, as
(Y,2), = [(y@®) z@)dt+(y,,2,) @

where Y ={y(t),y,}, Z ={z(t),z,}, y(t),z(t)e L,(H,(0,)), vy,,z,eH.
Consider the following problem

-

yl=-y'+— 4y(t)+ Ay®) +a)y) = yt) , v>1 @)
-y =2'Q) ®)

in L,(H,(0,1)) space ,where A is a self-adjoint and positive-definite operator in
H ( A> E, E isanidentity operator in H ), and has a completely continuous

inverse: A e o .
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Suppose that the operator-valued function q(t) is weakly measurable,
|| q(t)|| is bounded on [0,1].

For q(t)s 0 in the space L, one can associate with problem (2),(3) a
self adjoint operator L, defined by

D(Ly)={Y e L, I[y]e L,(H,(00)), v, = y'(1)}
1

Vi
LY =£y" (O +—*y(t)+ Ay, -y},
Obviously, for each y € D(L,) y(0)=y'(0)=0.
The operator L, has a discrete spectrum.
The operator corresponding to the case q(t) #0 isdenotedby L=L,+Q ,
where Q : Q{y(t), y' (M)} ={q(t) y(t),0} is a bounded self-adjoint operator in L,.
The eigenvalues and eigenvectors of the operator A were denoted by
7, <y, <. and @, ,,.., respectively .

The goal of the paper is to investigate asymptotic eigenvalues distribution
of L,, knowing the asymptote of eigenvalues of the operator A .

3. The asymptotic formula for the eigenvalues of L,
Suppose that the eigenvalues of the operator A are y, ~ ak“,k — o,
a >0,a >0 . By virtue of the spectral expansion of the operator A, we obtain
the following boundary value problem for the coefficients y, (t): (y(t), (/)k) :
, 1

- y{:(t)"' 4 Yk (t) = (}L el )yk (t) te (0’1) 4)

tz
- ¥ (U)=2y,() (5)
The solution to problem (4) from L,(0,1) is y,(t)= \/va(t A= )
This solution satisfies (5) if and only if

s NE)+ 2o (T A7 A7) =0 ©

is true at least for one y, (/1 # yk) .Therefore, the spectrum of the operator L,

consists of those real values of A # y, , such that at least for one k

(22+7/k)ZJ;(Z)+(l+ZZ%]JV(Z):0 7
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where z=./A—y, . Then, by using identity zJ/(z)=2J, ,(z)-d,(z) ([19
p. 56]) in (7), we have

s 0 15020 )0 @

Let’s find eigenvalues of L, , which are less than y, . These values are associated

with imaginary roots of the equation (8). By taking z = 2i\/§ and using [[19], p.

51]:
5 3, (2iy)
< n+V+1) ('\N)
we get
(—4y+y,) 2'\/_(\/_) Z;er
( 4y+7k (1- ZVJ(\/_Tanrn+V+1)
4y+7k2n|rn+v

—4y +7, j“’ y"
1+ g2 S S
(+ 2 ( V)anl“

=nir(n+v+1)
f:y_(n+v)(2yk 8n? —4nv+6n)+1+72k(1 2v)=O o
n! (n+v)F(n+v)

No flnd the roots of the following equation

(z+v)-82° —42v+6z+27/k)+1+7/2k(1 2v)=0

a
By substitution Z=X—-— [8 pp.234-236] we have
/ 9 ‘L L
4
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From the asymptotics of y, we get that the imaginary roots don’t exist.
Now, find the asymptotic of those solutions of equation (6) which are
greater than y, i.e., the real roots of equation (8). By virtue of the asymptotic for

a large |Z| [[19],p. 222]

- Bt

Equation (8) get the form

(1+ 22%(1— 2v)j\/%cos(z - % - %)(H O(%D -

or
2
1+ 2 T 1-2) .
tg(z—v—”—ﬁjz 2 1+O(—)
2 )
2 4 (z +;/k)z z
2
o 147 ;7k(1—2v) . .
z-——-—=arctg 5 l+0(—2] +7zm:7zm+0(—2j
2 4 (z +yk)z z z

where M s a large integer. So in this way we come to the fol-lowing statement.
Lemma 1. For the eigenvalues of L, the following asymptotic is true

ﬂ’m,k :7k+anzw y O Z(ﬂm+%+%j meZ

Denote the real roots of equation (8) , by X, (k=1,_oo) .

Let us prove the following two lemmas.
Lemma 2. Equation (8) has only real roots.
Proof. Let & be complex root of the function

(s 0 10 g2 o)

then «a, = a s also a root of this function, since the following series
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e €3]
J\z)=|—= —_—— -
(2) (2] mz_:‘)mll“(v +m+1)
has only real coefficients. From Bessel equation follows [19, c. 531]

wamwx%mn=Mfa{gwnﬁiﬂﬁ_%@ﬁﬂ%§ﬁ]

5 dx

s0, by a2¢a§ and J (at)=1J () , we get
jt at) dt=— (3, (@) (@) 3, (@ )a ()]

2
0
Take into conS|derat|0n

@%nhuwp{uzéﬁ}ﬁﬁ,
o e )= {10721 )

we get
2
(1+“°;“JJV(%) (1+“ ;“ij(a)
- J J
ag_’_}/k v(a)—‘r a2+)/k v(ao):

1
2
'gt‘\]v(at] dt = p—.

= —2(042—055) J |\, )d, (a)= JV(aY <0
2(062—065)(062+7k)(a§+7/k) v( 0) v( ) (a2+7/kxa§+}/k)
The integrand on the left hand side is positive, but on the right hand side we get a
negative number, which is contradiction.
The lemma is proved.
Let C'is a rectangular contour with vertices at the points £iB, A +iB

which bypasses the origin along small semicircle on the right side of imaginary.

Here A =nm +V7”_% , B is a large positive number. The following lemma is

true.
Lemma 3. For a sufficiently large integer m , the number of zeros of the following

function Z_V{(ZZ e ) (1+ z JZFVKJJV(Z)J
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inside of C isequalto M .
Proof. It is well known that the number of zeroes of the entire function

F(z) inside of the closed contour C equals to I )dz :

F(2)
z‘{(z2 +7, 231 (2)+ (1+ - 42-7.( jJV(Z)j is an entire function of z , that is why

the number of its zeros inside of C equals:

!

1j%vﬂf+ydmx> o)

dz =

2710 Zv[(zzm)za;() (“Z ;ykJJ”(Z)]

{zv(—(z + 7 zJV+l +[1+ 2T 1+ 2v j:l

zziﬂij
¢z { (22 + 7)1, .(z +(1+ l+2v z)]
—%I_VZ ( ( (22 +7k)zJM(z)+(1+z BRAY (RN jJV(szZ+
e (22 4y )d,a(2)+ |14 2 1+2v
I G A RO R i )M
2m£z ( (@ +7)0,.0) (1 A )JJ()J
«)2d,.(2)+ 5y L2,
N Zv((pr22;“(1+2v)jJ;(z)+z(1+2v)Jv(z)J .
Zmlz(<z+nﬁx4>+@+*;“a+wﬂ%cj _
I T e e )
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1 z ( (Z + % ZJV+1 Z)+ -3z° _7k)‘]v+1(2)) dz +

5
e ( (2% + )23, 4(2)+] 14+ 2 7% +7/k 1+2v)}] (z )J

z*((u k(L+2v )JJ +2(1+2v)3, z]
|
mcz‘”(—(zzﬂf ol J{l £ (14 2v) J J
z V[v(z +}/k ol (1+ 2 +7k V J, ZJ
=2i.|' dz +
AT, (z +7, zJV+1 M K@+2v)d,( ]
Lz (= (2% + 3, )23, (2)+ (22 + k)v+1 M(z) (- 322 yk)JM(z))dZ+

%
2 z‘V[—(z ) z)+( (1+2V)JJ (2 )]
1 Iz“[(l Zin (1+2v)jZJ (2)- (1+Z 1, (l+2v)J.]H1(z)+z(1+2v)JV(z)]

{0 2 2 )

zV[v(z2+yk)3zzyk (2 4y ) +1)- (1+ z ;” @+ 21/)DJM(Z)
e 2 (224920, @)+ [ 14 2 e e 2v) o, (2)
2 e )
1 z‘”(—(zz+yk)z+(1+ 2v)z )J (2) dr—

Zrziiz ( (22 + 7, )23, 4(2)+ [” zyk (1+2V)}] e )j

(— -y +1+ 21/)z\lv(z)+((z2 +7, )(v +;j —-32% -y, +1JJV+1(Z)
M el 1 b L)

Here we used the identities [19, p. 55]

2.(2)=10,(2)-23,4(2) . 23).4(2) =23, (2) - (v +23,.,(2).

As the integrand is an odd function the order of its numerator in the vicinity of
zerois O(z”) and the order of its denominator is O(z”l) , the integral along the

dz =

dz +

dz
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left part of contour vanishes. Now, consider the integrals along the remaining three
sides of the contour. Note that, on these sides ([19] p.221, p.88)
HY(z)+ H?(z)

J,(2)== ==

2

%

1 1 . vk T
where Hf)(z){zjzei[z“){“ (@)} HEZ)(Z){;JZG[ ’ 4){1+ 7, (2)},
s ,
n.,(z) and 7, ,(z) are of order O(lj for large |z|. We get
| ‘ z

B L s 21/)2‘]V(z)+[(z2 + yk{v +£] -32% -y, +1JJV+1(Z)
Lo 2
P ez (@)l )+(1+Z;yk(1+2v)}lv(z)

s, Lol

iB+m+—-—
2 4

1T [1+n,(2) . m v 1
I o] e RS

iB+mm+—-—
2 4

dz ~

One can analogously show that the integral along the lower side tends to the same
number.

To calculate the integral along the fourth side, we take into consideration the
following

J.(z)= \/gcos(z —% - ZJ[H OCD ,
2

1 j ) 1+o(1} dz =
2721 _iB W ‘]v+l(z) z
|B+;zm+——f 7 Wl'_ﬂ'j

P e
2 (z—m—ﬂj[ @]

—|B+;zm+—”—£ Sm
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4
=— ctg(z S fj[u O(EDdz ~
2 ” 2 4 z
—iB+mm+—-—
|B+7zm+? %
2 vr T Z
—iB+m+———
2

1
Consequently, the limit of the integral along the entire contour is m+O(E)

.However,as the integral must be an integer, it should be equal to M. The lemma is

proved.
Now, by using the above results, derive the asymptotic formula for the

eigenvalue distribution of the operator L.
Denote the distribution function of L, by N(4) .Then
N(1)= Zl S0, N(4) is a number of positive integer pairs (m, k) for which
Am k<A
¥ +ak < A . From the asymptotic of X it follows that one can find a number
& such that for the great values of n
(z—e)m<a, <(z+&)m
From the asymptotics of y, we have
(a—e)k* <y, <(a+e)k”.
Hence, we get

N,(4)< N(2)< N, (2) (10)
Where Nl(/l) is the number of the positive integer pairs for which
(a—g)k*+ (z—sfm?< A (11)

N, (4)is the number of the positive integer pairs (m, k) satisfying the inequality
(a+e)k“+ (z+efm? <A (12)

For N, (/1) as in [[5], Section 3, Lemma 2] we have:

2 e

T—& T—¢ A

dx So, by

substitution
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1 1
o i @ 1-a
x:( A sinzt) , dx=2$thOSt( A j (sinzt)a dt
a-¢ a a—-¢
we have

2+a
2420 2 2+a

cos?tsin“  tdt = ;1 yA% (13)

N, (1)<
alr-¢ a—g)E

Oy [N

alr-cfa-s)

T

2 2,
where y:_[cosztsina tdt .
0

Also for Nl(/I) as in [[5], Section 3, Lemma 2] we have:

2+a 1

e (1Y
1 - 1
alz+ela+e). \3te) 7THE

(14)

From (13)and (14), we have

2+a

2942
N(i)~ & 1

0((72' + g)(a + g)E

and consequently

2a

2+a j
A (L)~dnz g :(Mj (a+e)s

2y
For =2, N(/1,L0)~L1 ,from which
(r+e)a+e)
-1
A(L)=dn d | — 2|
(r+e)a+e)

Then, as Q is a bounded operator in L, , it follows from the relation for the
resolvents of the operators L and L [[6], p. 219]

RA(L) = RA(LO)_ R&(L)QRA(LO)
that the spectrum of L is also discrete. By virtue of the last equality and the

properties that hold for singular values of compact operators [[6], pp. 44, 49] as in
[[5], Section3, Lemma 2], for the eigenvalues of L, we have
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#,(L)~dn’.
So, we can state the following theorem:
Theoreml. Let A=A">E in H, A" be compact and eigenvalues of the

operator Asatisfy the relation », ~ak“,k —>o,a>0,a>0.Then
An(L)~ a1, (L)~ dn’

2a
a+2

o= ia<2
2

where

o> 2,

lLa=2.
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