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1.Introduction 

Spectral theory of operators plays a major role in mathematics and applied 
sciences. Boundary value problems with an eigenparameter in the boundary 
conditions are one of the most important fields in the spectral theory of operators. 
Many researches have been dedicated to studying the spectral properties of the 
boundary value problems with spectral parameter dependent boundary conditions 
(see, e.g., Fulton [4], Walter [18]). Various physical applications of such problems 
can be found in [4]. Note that many problems of mathematical physics, 
mechanics,theory of partial differential equations, etc are reduced to the study of 
boundary value problems for operator-differential equations in different spaces. 
The asymptotic distribution of eigenvalues for boundary-value problems with 
operator coefficients was first considered by A.G. Kostyuchenko and B.M. Levitan 
[7] .There followed a lot of works dedicated to the investigation of differential 
operators’ spectrum with operator coefficients. The asymptotic distribution of the 
eigenvalues of operators defined on the whole space and having a discrete 
spectrum can be interesting for those who specialize in quantum mechanics. In 
[17], M.A. Rybak studied the asymptotic behavior of eigenvalues of a boundary 
value problem with an eigenparameter in the boundary conditions for a second 
order elliptic operator-differential equation. The symmetry and self-adjointness of 
the operator associated with this problem were investigated. It was shown that if 
the considered operator has a discrete spectrum, then the operator associated with 
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this problem has a discrete spectrum, too. The asymptotic formula for the 
eigenvalues of this problem was derived.  

The theory of operator-differential equations with unbounded operator-
coefficient is a common tool for studying infinite systems of ordinary differential-
operators, partial differential equations and integro-differential equations. The main 
task in this theory is to determine the behavior of the eigenvalues and 
eigenfunctions of the associated differential operators.  

In [1],we considered the spectral problem for the Sturm-Liouville operator 
in the space ))1,0(,(2 HL . In this work we consider the spectral problem with the 
boundary condition which given   in general form . The symmetry and self-
adjointness of the operator associated with this problem were established and was 
announced in [13]. The asymptotic formula for the eigenvalues of this problem was 
derived. If  1== db , 0=c in the second con-dition, then the boundary condition 
takes the form  )1()1()1( yyay ′−=′+ λ . For this problem the first [14,15] and the 
second [9,16] trace formulas are established.  

In [11,12] the first and the  second regularized trace formulas for Sturm-
Liouville operators were calculated.  

In this paper we consider an operator different from the operators in [2,3]  
by a boundary condition. The main results of this work was announced in [10]. 
2. Formulation of the problem 

H  is a separable Hilbert space.  A scalar product and a norm in H
denoted by ),( ⋅⋅   , and  ⋅ , respectively.  ))1,0(,(2 HL   is a space of  the 

vector functions ( )ty  such that ( ) ∞<∫ dtty
1

0

2 . Let HHLL ⊕= ))1,0(,(22 . Define the 

scalar product in  2L  as     

),())(),((),( 11

1

0
2

zydttztyZY L += ∫                      (1)  

where ∈== )(),(,}),({,}),({ 11 tztyztzZytyY  )),1,0(,(2 HL  ., 11 Hzy ∈     
Consider the following problem  

[ ] ( ) 1,)()()()(4
1

)( 2

2

≥=++
−

+′′−≡ νλ
ν

tytytqtAyty
t

tyyl      (2)      

)1()1( yy ′=− λ                           (3) 
in  ))1,0(,(2 HL  space ,where A  is a self-adjoint and positive-definite operator in 
H   ( EEA ,>  is an identity operator in H  ), and has a completely continuous 

inverse: ∞
− ∈σ1A . 
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Suppose that the operator-valued function ( )tq   is weakly measurable,

)(tq  is bounded on [ ]1,0 . 

For ( ) 0≡tq     in  the space  2L  one can associate with problem (2),(3) a 
self adjoint operator 0L   defined by 

( ) [ ] )}1(,))1,0(,(,{ 1220 yyHLylLYLD ′=∈∈=  

( ) )}.1(),(4
1

)(''{ 2

2

0 ytAyty
t

tyYL −+
−

+−=
ν

 

Obviously, for each ( )0LDy∈  ( ) ( ) .000 =′= yy            
The operator 0L  has a discrete spectrum. 

The operator corresponding to the case  ( ) 0≡/tq   is denoted by QLL += 0  , 

where =′ )}1(),({: ytyQQ }0),()({ tytq  is a bounded self-adjoint operator in 2L . 
The eigenvalues and eigenvectors of  the operator A  were denoted by 

...21 ≤≤ γγ  and ,..,, 21 ϕϕ respectively . 
The  goal of the paper is to investigate asymptotic eigenvalues distribution 

of   0L , knowing the asymptote of  eigenvalues of the operator A  . 
3. The asymptotic formula for the eigenvalues of 0L   

Suppose that the eigenvalues of the operator A  are  ,,~ ∞→kаkk
αγ

0,0 >> αа  . By virtue of the spectral expansion  of  the operator  A , we obtain 
the following boundary value problem for  the coefficients ( ) ( )( )kk tyty ϕ,=  : 

( ) ( ) ( ) ( )tyty
t

ty kkkk γλ
ν

−=
−

+′′− 2

2

4
1

      ( )1,0∈t             (4)   

                         ( ) ( )11 kk yy ′=− λ                               (5)     

The solution to problem (4) from )1,0(2L  is ( ) ( )kk tJtty γλν −= . 
This solution satisfies (5) if   and only if 
  ( )kJ γλν − ( )kJ γλλ

ν −+
2

( ) 0=−′−+ kk J γλγλλ ν          (6)           

 is true at least for one kγ  ( )kγλ ≠  .Therefore, the spectrum of the operator   0L    
consists of those  real values of kγλ ≠   , such that at least for one k    

             ( ) ( ) ( ) 0
2

1
2

2 =






 +
++′+ zJzzJzz k

k νν
γγ               (7)     
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where  kz γλ −=  .  Then, by using   identity   ( ) ( ) ( )zJzzJzJz ννν ν−=′ −1  ([ 19 
p. 56])  in (7), we have 

  ( ) ( ) ( ) ( ) 021
2

1
2

1
2 =








−

+
+++ − zJzzzJz k

k νν νγγ             (8)     

Let’s find eigenvalues of 0L  , which are less than   kγ . These values are associated 

with imaginary roots of   the equation (8). By taking yiz 2=   and using [[19], p. 
51]: 

( )
( )
( )ν
ν

ν yi

yiJ
nn

y
n

n 2
1!0
=

++Γ∑
∞

=

 

we get  

( ) ( ) ( )∑
∞

=

−
+

+Γ
+−

0

1

!
24

n

n

k nn
yyiyiy

ν
γ

ν
 

( ) ( ) ( ) 0
1!

21
2

41
0

=
++Γ







 −

+−
++ ∑

∞

=n

n
k

nn
yyiy
ν

νγ ν
 

or   

 ( ) ( )∑
∞

=

+
+Γ

+−
0 !

42
n

n

k nn
yy

ν
γ

 ( ) ( ) =++Γ






 −

+−
+ ∑

∞

=0 1!
21

2
41

n

n
k

nn
yy
ν

νγ  

( )( ) ( )
( ) ( ) 0

21
2

16482

!

2

0
=

+Γ+

−+++−−+
=∑

∞

= νν

νγνγν

nn

nnnn

n
y

k
k

n

n

      (9)    

Now find the roots of the following equation 

( )( ) ( ) 021
2

12648 2 =−++++−−+ νγγνν k
kzzzz  

or  

0
8

2
1

44
3

22
3

4
3 2

23 =
++

−







−−+






 +−+

k
k

k zzz

γνγγννν . 

By substitution 
3
axz −=   [8 pp.234-236]  we have  

+++−= 3
32

2742
pqqz

32742
3

32 apqq
−+−−  
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where  
32
5

88

2

−−= kq γν
,  

16
3

44

2

−−−= kp γν   , ν
2
3

4
3
+−=a . 

From the asymptotics of kγ   we get that the imaginary roots don’t exist. 
Now, find the asymptotic of those solutions of   equation (6)  which are 

greater than kγ  i.e., the real roots of  equation  (8). By virtue of the asymptotic for 

a large z  [[19],p. 222]  

( ) ,11
42

cos2














+






 −−=

z
Oz

z
zJ πνπ

πν  

Equation  (8) get the form 

( ) −













+






 −−








−

+
+

z
Oz

z
z k 11

42
cos221

2
1

2 πνπ
π

νγ
 

( ) 011
42

sin22 =













+






 −−+−

z
Oz

z
zz k

πνπ
π

γ  

or 

( )
( ) 














+

+

−
+

+
=






 −−

z
O

zz

z

ztg
k

k
11

21
2

1

42 2

2

γ

νγ
πνπ , 

 

( )
( ) 






+=+

































+

+

−
+

+
=−− 222

2

111
21

2
1

42 z
Omm

z
O

zz

z

arctgz
k

k

ππ
γ

νγ
πνπ  

where m  is a large integer. So in this way we come to the fol-lowing statement. 
Lemma  1.   For  the eigenvalues of  0L   the following asymptotic is true 

2
, mkkm αγλ +=

   , 





 ++=

42
πνππα mm , Zm∈    . 

Denote the real   roots of equation  (8) , by  kmx ,  ( )∞= ,1k   . 
Let  us  prove the following two lemmas. 
  Lemma 2. Equation (8)  has only real roots. 
Proof.  Let α  be complex root of the function   

( ) ( )++ − zzJz k 1
2

νγ ( ) ( )zJz k
ννγ









−

+
+ 21

2
1

2

, 

then    αα =0   is also a root of this function, since the following series  
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( )
( )

( )∑
∞

= ++Γ







−







=

0 1!
2

1

2 m

m
m

mm

z
zzJ

ν

ν

ν  

has only real coefficients. From Bessel equation follows [19, с. 531] 

( ) ( ) ( ) ( ) ( ) ( )




 −

−
=∫ dx

xdJxJ
dx

xdJxJxdttJttJ
x αααα

αα
αα ν

ν
ν

ννν 0
0

2
0

2
0

0 . 

so, by  2
0

2 αα ≠   and  ( ) ( )tJtJ 0αα νν =   , we get 

( ) ( ) ( ) ( ) ( )[ ]αααααα
αα

α ννννν JJJJdttJt ′−′
−

=∫ 0002
0

2

1

0

2 1
. 

Take into consideration  

( ) ( ) ( ) ,
2

1
2

2 αγαααγα νν JJ k
k 







 +
+−=′+  

( ) ( ) ( )0

2
0

00
2
0 2

1 αγαααγα νν JJ k
k 







 +
+−=′+

,
 

  we get  

( )

( )
( )

( )
( )

=
−

+








 +
+

+
+








 +
+

−
=∫

1

0
2
0

2

02

2

2
0

0

2
0

2

2
1

2
1

αα

α
γα

αγα

α
γα

αγα

α
ν

ν

ν

ν

ν

J
J

J
J

dttJt k

k

k

k

 

( )
( )( )( ) ( ) ( ) ( )

( )( ) .0
2

2
2
0

2

2

02
0

22
0

2

2
0

2

<
++

−=
++−

−−
=

kkkk

J
JJ

γαγα
α

αα
γαγααα

αα ν
νν  

The integrand on the left hand side is positive, but on the right hand side we get a 
negative number, which is contradiction.  
The lemma is proved. 

Let С is a rectangular contour with vertices at the points ,iB± iBAm ±  
which bypasses the origin along small semicircle on the right side of imaginary. 

Here  
42
πνππ −+= mAm  , B  is a large positive number. The following lemma is 

true. 
Lemma 3. For a sufficiently large integer m , the number of zeros of the following 
function  

( ) ( ) ( )














 +
++′+− zJzzJzzz k

k νν
ν γγ

2
1

2
2  
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inside of С  is equal to m  . 
 Proof. It is well known that the number of zeroes of the entire function  

( )zF  inside of  the closed contour  С  equals to  ( )
( )∫
′

С

dz
zF
zF  . 

( ) ( ) ( )














 +
++′+− zJzzJzzz k

k νν
ν γγ

2
1

2
2   is an entire function of z , that is why 

the number of its zeros inside of С  equals: 

 

( ) ( ) ( )

( ) ( ) ( )
∫ =
















 +
++′+

′



























 +
++′+

−

−

С k
k

k
k

dz
zJzzJzzz

zJzzJzzz

i
νν

ν

νν
ν

γγ

γγ

π
2

1

2
1

2
1

2
2

2
2

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ =

















+

+
+++−

′




























+

+
+++−

=

+
−

+
−

С k
k

k
k

dz
zJzzzJzz

zJzzzJzz

i
νν

ν

νν
ν

νγγ

νγγ

π
21

2
1

21
2

1

2
1

2

1
2

2

1
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ +

















+

+
+++−

















+

+
+++−−

=

+
−

+
−−

С k
k

k
k

dz
zJzzzJzz

zJzzzJzz

i
νν

ν

νν
ν

νγγ

νγγν

π
21

2
1

21
2

1

2
1

2

1
2

2

1
21

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

∫ +

















+

+
+++−

−−+′+−
+

+
−

++
−

С k
k

kk dz
zJzzzJzz

zJzzJzzz
i

νν
ν

νν
ν

νγγ

γγ
π

21
2

1

3
2
1

2

1
2

1
2

1
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ =

















+

+
+++−









++′








+

+
+

+

+
−

−

С k
k

k

dz
zJzzzJzz

zJzzJzz

i
νν

ν

νν
ν

νγγ

ννγ

π
21

2
1

2121
2

1

2
1

2

1
2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ +

















+

+
+++−

















+

+
+−+

=

+
−

+
−

С k
k

k
k

dz
zJzzzJzz

zJz
z

zJzz

i
νν

ν

νν
ν

νγγ

νγνγν

π
21

2
1

21
2

1

2
1

2

1
2

2

1
2
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

∫ +

















+

+
+++−

−−+′+−
+

+
−

++
−

С k
k

kk dz
zJzzzJzz

zJzzJzzz
i

νν
ν

νν
ν

νγγ

γγ
π

21
2

1

3
2
1

2

1
2

1
2

1
2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ =

















+

+
+++−









++′








+

+
+

+

+
−

−

С k
k

k

dz
zJzzzJzz

zJzzJzz

i
νν

ν

νν
ν

νγγ

ννγ

π
21

2
1

2121
2

1

2
1

2

1
2

2

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ +

















+

+
+++−

















+

+
+−+

=

+
−

+
−

С k
k

k
k

dz
zJzzzJzz

zJz
z

zJzz

i
νν

ν

νν
ν

νγγ

νγνγν

π
21

2
1

21
2

1

2
1

2

1
2

2

1
2

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

∫ +

















+

+
+++−

−−+++++−
+

+
−

++
−

С k
k

kkk dz
zJzzzJzz

zJzzJzzzJzz
i

νν
ν

ννν
ν

νγγ

γνγγ
π

21
2

1

31
2
1

2

1
2

1
2

1
22

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫ =

















+

+
+++−









++








+

+
+−








+

+
+

+

+
−

+
−

С k
k

kk

dz
zJzzzJzz

zJzzJzzJ
z

zz

i
νν

ν

ννν
ν

νγγ

ννγννγ

π
21

2
1

2121
2

121
2

1

2
1

2

1
2

1

22

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )
∫ +

















+

+
+++−

















+

+
+−+++−−+

=

+
−

+
−

С k
k

k
kkk

dz
zJzzzJzz

zJzzzzz

i
νν

ν

ν
ν

νγγ

νγνγγγν

π
21

2
1

21
2

113

2
1

2

1
2

1

2
222

( ) ( )( ) ( )

( ) ( ) ( ) ( )
∫ =

















+

+
+++−

+++−
+

+
−

−

С k
k

k dz
zJzzzJzz

zJzzzz
i

νν
ν

ν
ν

νγγ

νγ
π

21
2

1

21
2
1

2

1
2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
∫









+

+
+++−









+−−






 +++++−−

=

+

+

С k
k

kkk

dz
zJzzzJz

zJzzzzJz

i
νν

νν

νγγ

γνγνγ

π
21

2
1

13
2
121

2
1

2

1
2

1
222

 

Here we used the identities  [19, p. 55] 
( ) ( ) ( )zzJzJzJz 1+−=′ ννν ν  , ( ) ( ) ( ) ( )zJzzJzJz 11 1 ++ +−=′ ννν ν . 

As the integrand is an odd function the order of  its numerator in the vicinity of 
zero is  ( )νzO  and the order of its denominator is ( )1+νzO  , the integral along the 
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left part of contour vanishes. Now, consider the integrals along the remaining three 
sides of the contour. Note that, on these sides ([19] p.221, p.88) 

( )
( )( ) ( )( )

2

21 zHzHzJ νν
ν

+
= , 

where    ( )( ) ( ){ },12
,1

422
1

1 ze
z

zH
zi

ν

πνπ

ν η
π

+





=







 −−   ( )( ) ( ){ },12

,2
422

1

2 ze
z

zH
zi

ν

πνπ

ν η
π

+





=







 −−−  

( )zνη ,1  and ( )zνη ,2   are of order 







z
O 1   for large z . We get 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
~

21
2

1

13
2
121

2
1

42

2

1
2

1
222

∫
−++ +

+









+

+
+++−









+−−






 +++++−−iB

miB k
k

kkk

dz
zJzzzJz

zJzzzzJz

i πνππ νν

νν

νγγ

γνγνγ

π

( )
( ) =














+∫

−++
+

iB

miB

dz
z

O
zJ

zJ
i

42
1

11
2
1~

πνππ
ν

ν

π

( )
( ) ( )[ ]

8
1

42
1

1
1

2
1

42

2

1,2

,2 −+→+








+
+

∫
−++

+

ν
η
η

π πνππ
ν

ν mdzeO
z

ziB

miB

iz .  

One can analogously show that the integral along the lower side tends to the same 
number. 
To calculate the integral along the fourth side, we take into consideration the 

following 

( ) ,11
42

cos2














+






 −−=

z
Oz

z
zJ πνπ

πν  

( ) 













+






 −−=+ z

Oz
z

zJ 11
42

sin2
1

πνπ
πν

 

we get   

( )
( ) =














+∫

−++

−++−
+

42

42
1

11
2
1

πνππ

πνππ
ν

ν

π

miB

miB

dz
z

O
zJ

zJ
i

=













+







 −−







 −−

∫
−++

−++−

42

42

11

42
sin

42
2
1

πνππ

πνππ
πνπ

πνπ

π

miB

miB

dz
z

O
z

zсos

i
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~11
422

1 42

42

∫
−++

−++−















+






 −−=

πνππ

πνππ

πνπ
π

miB

miB

dz
z

Ozctg
i

2
1~111

2
1 42

42

∫
−++

−++−















+

πνππ

πνππ
π

miB

miB

dz
z

O
zi

  

Consequently, the limit of the integral along the entire contour is 





+

m
Om 1

 

.However,as the integral must be an integer, it should be equal to m . The lemma is 
proved.  

Now, by using the above results, derive the asymptotic formula for the 
eigenvalue distribution of the operator 0L . 

Denote the distribution function of  0L   by ( )λN  .Then 

( ) ∑
<

=
λλ

λ
km

N
,

1 .So, ( )λN   is a number of positive integer pairs ( )km,  for which    

λαγ <+ 2
mk  . From the asymptotic of  kmx ,   it follows that one can find a number  

ε   such that for the great values of n   
( ) ( )mm m επαεπ +<<−  

From the asymptotics of  kγ   we have    
( ) ( ) αα εγε kaka k +<<− . 

Hence, we get 
( ) <λ1N ( ) <λN ( )λ2N       (10) 

Where  ( )λ1N  is the number of the positive integer pairs for which 

  ( ) +− αε ka ( ) 22 mεπ − λ<      (11) 

( )λ2N is the number of the positive integer pairs ( )km,  satisfying the inequality 

( ) ++ αε ka ( ) 22 mεπ + λ<       (12) 

For  ( )λ2N    as in [[5], Section 3, Lemma 2] we have: 

( ) ( ) =−−
−

≤ ∫








−

dxxaN
a

α

ε
λ

αελ
επ

λ

1

0
2

1 ( ) dxxaa

∫








− −
−

−

α

ε
λ

α

λ
ε

επ
λ

1

0

1 So, by 

substitution 
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( ) ,sincossin2,sin
1

2

11

2 dtt
a

ttdxt
a

x α
ααα

ε
λ

αε
λ −









−
=








−
=      

we have 

( )
( )( ) ( )( )

α
α

α

π

α

α

α
α

γλ
εεπαεεπα

λλ 2
2

1

2

0

12
2

1

2
2

2
2sincos2 +

−

+

−−
=

−−
≤ ∫

a
tdtt

a
N      (13) 

where  ∫
−

=
2

0

12
2 sincos

π

αγ tdtt   . 

Also for ( )λ1N  as in [[5], Section 3, Lemma 2] we have: 

( )
( )( ) επ

λ
ε

λ

εεπα

γλλ
α

α

α
α

+
−








+
−

++
≥

+ 1

1

2
2

1
2

aa
N  (14) 

From   (13) and  (14) , we have 

( )
( )( )α

α
α

εεπα

γλλ 1

2
2

2~
++

+

a
N  

and consequently 
 

( ) ( ) ( ) α
α
α

α
α

ε
γ
επαλ +

++

+






 +
= 2

22
2

2
2

0 2
,~ addnLn  

For  2=α ,   ( )
( )( )2

10 ~,
εεπ

γλλ
++ a

LN ,from which 

( )
( )( )

1

2
10 ,~

−















++
=

εεπ

γλ
a

ddnLn  . 

Then, as Q  is a bounded operator in  2L  , it follows from the relation for the 
resolvents of the operators 0L and L  [[6], p. 219] 

( ) ( ) ( ) ( )00 LQRLRLRLR λλλλ −=  
that the spectrum of L  is also discrete. By virtue of the last equality and the 
properties that hold for singular values of compact operators [[6], pp. 44, 49] as in 
[[5], Section3, Lemma 2], for the eigenvalues of   L , we have 
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( ) δµ dnLn ~ . 
So, we can state the following theorem: 
Theorem1.  Let EAA >= * in H , 1−A   be compact and eigenvalues of the 
operator A satisfy the relation   αγ akk ~ , ∞→k , 0,0 >> αa . Then 

( ) ( ) δµλ dnLL nn ~~0  
where  















=

<

>
+

=

.2,1

,2,
2
3

,2,
2

2

α

α

α
α
α

δ
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